Estimation of the Glass Transition Temperature (Tg) of an Amorphous Drug Substance from Dispersions in **Polymeric Carriers**

Introduction

- the amorphous state
- physical stability of the amorphous form
- \succ The amorphous state is a high energy state that may
- and the amorphous compound can crystallize above the intended storage temperature¹
- DSC thermogram as a change in the heat capacity

 modulated DSC (mDSC) was also attempted and no apparent Tg was observed.

Victor C. Rucker (vrucker@gilead.com) and Jodi Fausnaugh-Pollitt, Gilead Sciences, Foster City, CA Michael DeLion and G. Patrick Stahly (pstahly@tricliniclabs.com), Triclinic Labs, West Lafayette, IN

> The rearragned Fox Equation³ assumes equal densities and calculating the Tg of the unknown (e.g., Tg_{unk}) from the observed Tg_{mix} , Tg_{polymer}, w_{polymer}, and w_{unk}

> > $1/Tg_{unk} = W_{unk}/(1/Tg_{mix} - W_{polymer}/Tg_{polymer})$

The rearranged <u>Gordon-Taylor⁴</u> equation employs the density of the two components in the calculation. For this evaluation, a range of K values were used.

 $Tg_{unk} = \{Tg_{mix}[w_{unk} + K^*w_{polymer})] - (K^*w_{polymer}^*Tg_{polymer})\}/w_{unk}$ $K = (\rho_{unk}^*Tg_{unk})/(\rho_{polymer}^*Tg_{polymer})$

References: 1. Hancock and Zografi, J. Pharm. Sci. 1997, 86, 1 2. Wunderlich, J. Appl. Polym.. Sci. 2007, 105, 49 3. Fox, T.G. J. Appl. Phys. 1950, 21, 581 4. Gordon, M.; Taylor, J.S. *J. Appl. Chem.* **1952**, *2*, 493

Polarized Light Microscopy Indicates the Material is Ordered

Evaluating PVP and Plasdone S630

PVP (Tg ~ 177 °C) and Plasdone S630 (Tg ~ 106 °C) were evaluated. It was found that the API is an "antiplasticizer" with the mixtures having a higher Tg than the pure polymer. The apparent Tg for mixtures with PVP was greater than the decomposition temperature, rendering the PVP data suspect.

Estimating the Tg from Plasdone S630 Dispersions

Data from the dispersions behaved non-linearly, indicating a nonideal dispersion. Therefore, the calculated Tg depends on the amount of polymer present in the mixture.

The estimated values for the Tg, using a discrete range of K values, from the 20% and 50% loading conditions are below.

Equation Used	K Value	Temp Est from 20% (°C)	Temp Est from 50% (°C)
Fox	n/a	148	155
Gordon-Taylor	0.6	129	139
	0.8	134	143
	1.2	144	151
	1.4	149	155

 \rightarrow It was necessary to determine the Tg of a x-ray amorphous drug to be delivered in the amorphous form.

- mesophasic material
- polymers of a known Tg
- amorphous drug

Conclusions

 \geq PLM analysis indicated the material was ordered, suggesting a

 \succ The Tg was estimated from mixtures of the test article with

 \succ It was estimated that the Tg is > 50 °C above any expected storage temperature that would be encountered by the